The US Education system is massive and complicated. We need improvements at scale.

\$800000M

Total US spend on K-12 Education¹

\$475M

FY2023 NSF EDU budget request on "research"²

^{1.} In 2020-21 dollars, per https://nces.ed.gov/fastfacts/display.asp?id=66.

1

Is the NSF investment generating the best possible answers to the most important STEM education research questions for our country?

Does NSF's current PreK-12 research spend reflect the right priorities?

Science, mathematics, engineering, technology?

PreK, elementary, middle, high?

Pre-service, in-service?

Demographic identifiers of students and teachers?

Classroom, school, district, state?

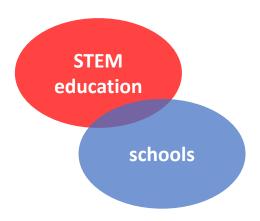
Early stage? Exploratory? Large-stage? Scale-up?

Are NSF-funded researchers asking the right questions for the country?

To what degree do funding mechanisms (e.g. solicitations, Dear Colleagues, etc.) shape the questions proposers consider?

Are questions for further study pursued?

In education, contexts matter most. How can we help research translate different contexts and schools?


What proportion of panelists are school leaders or teachers? What proportion of PIs?

How is the NSF using positional authority, resources, and reputation to drive changes in the PreK-12 education system to benefit the country?

For PreK-12 people, think leaders.

Every great school has a great leader.

Leaders translate research into their context.

A theory-of-action, perhaps.

Teachers matter most. We must enable ordinary people to become extraordinary teachers in great schools.

States, districts, and schools are accountable for improving PreK-12 STEM education. Co-creation of research agendas is rare, difficult, and essential.

The NSF contributes funding for people and research to help states/districts manage schools where teachers can do extraordinary things for students.